Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, RSC Advances, 25(4), p. 12995, 2014

DOI: 10.1039/c3ra44867c

Links

Tools

Export citation

Search in Google Scholar

Design and fabrication of random silver films as substrate for SERS based nano-stress sensing of proteins

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report a simple and easy to fabricate random silver film (RSF) as a highly sensitive Surface Enhanced Raman Scattering (SERS) substrate which can be fabricated directly onto a dielectric substrate such as glass. An electron beam evaporation system was used for substrate fabrication. The SERS activity is attributed to the formation of electromagnetic ‘hot-spots’ on the film. Substrate performance is analyzed by studying the reproducibility and signal enhancement from the Raman active molecule, 2-naphthalene thiol (NT), which is covalently anchored to the substrate. The metal thickness is optimized to achieve the highest SERS enhancement. Based on this study we found that a 7 nm RSF substrate gave the best SERS activity. The SERS signal intensity exhibited by 7 nm RSF is found to be at least 3 orders of magnitude higher than that of a commercial substrate. The SERS enhancement factor is estimated to be 1 × 107 with a point-to-point intensity variation of about 12% and it reaches a maximum of 15% for batch-to-batch comparison. The efficacy of this substrate for biosensing is demonstrated by detecting H1 influenza protein, and the detection limit is found to be 10 pM when it is used along with a recently established nano-stress SERS sensor, 4-ATP (4-amino-thiophenol), as linker molecule. This detection limit shows a performance superior to conventional ELISA (which has a nM detection limit). These results show promise for the development of a biosensing platform based on the marriage of RSF with nano-stress sensors.