Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of Internal Medicine, 2(263), p. 167-178, 2008

DOI: 10.1111/j.1365-2796.2007.01905.x

Links

Tools

Export citation

Search in Google Scholar

Mitochondrial dysfunction as a cause of ageing

Journal article published in 2008 by A. Trifunovic, N.‐G-G. Larsson ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mitochondrial dysfunction is heavily implicated in the ageing process. Increasing age in mammals correlates with accumulation of somatic mitochondrial DNA (mtDNA) mutations and decline in respiratory chain function. The age-associated respiratory chain deficiency is typically unevenly distributed and affects only a subset of cells in various human tissues, such as heart, skeletal muscle, colonic crypts and neurons. Studies of mtDNA mutator mice has shown that increased levels of somatic mtDNA mutations directly can cause a variety of ageing phenotypes, such as osteoporosis, hair loss, greying of the hair, weight reduction and decreased fertility. Respiratory-chain-deficient cells are apoptosis prone and increased cell loss is therefore likely an important consequence of age-associated mitochondrial dysfunction. There is a tendency to automatically link mitochondrial dysfunction to increased generation of reactive oxygen species (ROS), however, the experimental support for this concept is rather weak. In fact, respiratory-chain-deficient mice with tissue-specific mtDNA depletion or massive increase of point mutations in mtDNA typically have minor or no increase of oxidative stress. Mitochondrial dysfunction is clearly involved in the human ageing process, but its relative importance for mammalian ageing remains to be established.