Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, New Journal of Physics, 4(8), p. 58-58, 2006

DOI: 10.1088/1367-2630/8/4/058

Links

Tools

Export citation

Search in Google Scholar

Degradation of a quantum reference frame

Journal article published in 2006 by Stephen D. Bartlett ORCID, Terry Rudolph, Robert W. Spekkens, Peter S. Turner
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We investigate the degradation of reference frames, treated as dynamical quantum systems, and quantify their longevity as a resource for performing tasks in quantum information processing. We adopt an operational measure of a reference frame's longevity, namely, the number of measurements that can be made against it with a certain error tolerance. We investigate two distinct types of reference frame: a reference direction, realized by a spin-j system, and a phase reference, realized by an oscillator mode with bounded energy. For both cases, we show that our measure of longevity increases quadratically with the size of the reference system and is therefore non-additive. For instance, the number of measurements that a directional reference frame consisting of N parallel spins can be put to use scales as N^2. Our results quantify the extent to which microscopic or mesoscopic reference frames may be used for repeated, high-precision measurements, without needing to be reset - a question that is important for some implementations of quantum computing. We illustrate our results using the proposed single-spin measurement scheme of magnetic resonance force microscopy.