Published in

North Carolina State University, BioResources, 1(9)

DOI: 10.15376/biores.9.1.772-785

Links

Tools

Export citation

Search in Google Scholar

Alkaline and Organosolv Lignins from Furfural Residue: Structural Features and Antioxidant Activity

Journal article published in 2013 by Shao-Ni Sun, Xue-Fei Cao, Feng Xu, Gwynn Lloyd Jones, Mark Baird ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Furfural residue (FR), composed mainly of cellulose and lignin, is an industrial waste produced during furfural manufacture. In this study, dioxane, alkali, ethanol, alkali-ethanol, and alkaline hydrogen peroxide (AHP) were used to extract lignins from FR. The structural features of these lignins obtained were characterized by sugar analysis, GPC, UV, FT-IR, and HSQC spectra. As compared to dioxane lignin (DL), other lignins showed lower molecular weights (Mw) owing to the partial cleavage of the linkages between lignin units. Results from HSQC spectra revealed that β-O-4' and β-5' were still the major linkages of the FR lignin. Moreover, p-coumaric and ferulic acids were released and co-precipitated in the lignin preparations extracted with alkali and AHP, whereas part of the esters in DL were preserved during the dioxane extraction. Antioxidant activity investigation indicated that the antioxidant property of the alkali and alkali-ethanol lignins was higher than that of the commercial antioxidant, butylated hydroxytoluene.