Published in

Annual Reviews, Annual Review of Chemical and Biomolecular Engineering, 1(5), p. 405-427, 2014

DOI: 10.1146/annurev-chembioeng-061312-103314

Links

Tools

Export citation

Search in Google Scholar

Force-Field Parameters from the SAFT-γ Equation of State for Use in Coarse-Grained Molecular Simulations

Journal article published in 2014 by Erich A. Müller ORCID, George Jackson ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A description of fluid systems with molecular-based algebraic equations of state (EoSs) and by direct molecular simulation is common practice in chemical engineering and the physical sciences, but the two approaches are rarely closely coupled. The key for an integrated representation is through a well-defined force field and Hamiltonian at the molecular level. In developing coarse-grained intermolecular potential functions for the fluid state, one typically starts with a detailed, bottom-up quantum-mechanical or atomic-level description and then integrates out the unwanted degrees of freedom using a variety of techniques; an iterative heuristic simulation procedure is then used to refine the parameters of the model. By contrast, with a top-down technique, one can use an accurate EoS to link the macroscopic properties of the fluid and the force field parameters. We discuss the latest developments in a top-down representation of fluids, with a particular focus on a group-contribution formulation of the statistical associating fluid theory (SAFT-γ). The accurate SAFT-γ EoS is used to estimate the parameters of the Mie force field, which can then be used with confidence in direct molecular simulations to obtain structural, interfacial, and dynamical properties that are otherwise inaccessible from the EoS. This is exemplified for several prototypical fluids and mixtures, including carbon dioxide, hydrocarbons, perfluorohydrocarbons, and aqueous surfactants. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering Volume 5 is June 07, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.