Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Microscopy and Microanalysis, 3(10), p. 355-365, 2004

DOI: 10.1017/s1431927604040589

Links

Tools

Export citation

Search in Google Scholar

The Influence of Tungsten on the Chemical Composition of a Temporally Evolving Nanostructure of a Model Ni-Al-Cr Superalloy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The influence of W on the temporal evolution of gamma' precipitation toward equilibrium in a model Ni-Al-Cr alloy is investigated by three-dimensional atom-probe (3DAP) microscopy and transmission electron microscopy (TEM). We report on the alloys Ni-10 Al-8.5 Cr (at.%) and Ni-10 Al-8.5 Cr-2 W (at.%), which were aged isothermally in the gamma + gamma' two-phase field at 1073 K, for times ranging from 0.25 to 264 h. Spheroidal-shaped gamma' precipitates, 5-15 nm diameter, form during quenching from above the solvus temperature in both alloys at a high number density (approximately 1023 m-3). As gamma' precipitates grow with aging at 1073 K, a transition from spheroidal- to cuboidal-shaped precipitates is observed in both alloys. The elemental partitioning and spatially resolved concentration profiles across the gamma' precipitates are obtained as a function of aging time from three-dimensional atom-by-atom reconstructions. Proximity histogram concentration profiles (Hellman et al., 2000) of the quaternary alloy demonstrate that W concentration gradients exist in gamma' precipitates in the as-quenched and 0.25-h aging states, which disappear after 1 h of aging. The diffusion coefficient of W in gamma' is estimated to be 6.2 x 10-20 m2 s-1 at 1073 K. The W addition decreases the coarsening rate constant, and leads to stronger partitioning of Al to gamma' and Cr to gamma.