Published in

Springer Nature [academic journals on nature.com], Pediatric Research, 1(50), p. 44-49, 2001

DOI: 10.1203/00006450-200107000-00010

Links

Tools

Export citation

Search in Google Scholar

Resistance of Different Surfactant Preparations to Inactivation by Meconium

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A disease similar to acute respiratory distress syndrome may occur in neonates after aspiration of meconium. The aim of the study was to compare the inhibitory effects of human meconium on the following surfactant preparations suspended at a concentration of 2.5 mg/mL: Curosurf, Alveofact, Survanta, Exosurf, Pumactant, rabbit natural surfactant from bronchoalveolar lavage, and two synthetic surfactants based on recombinant surfactant protein-C (Venticute) or a leucine/lysine polypeptide. Minimum surface tension, determined with a pulsating bubble surfactometer, was increased >10 mN/m at meconium concentrations >or=0.04 mg/mL for Curosurf, Alveofact, or Survanta, >or=0.32 mg/mL for recombinant surfactant protein-C, >or=1.25 mg/mL for leucine/lysine polypeptide, and >or=20 mg/mL for rabbit natural surfactant. The protein-free synthetic surfactants Exosurf and Pumactant did not reach minimum surface tension <10 mN/m even in the absence of meconium. We conclude that surfactant activity is inhibited by meconium in a dose-dependent manner. Recombinant surfactant protein-C and leucine/lysine polypeptide surfactant were more resistant to inhibition than the modified natural surfactants Curosurf, Alveofact, or Survanta but less resistant than natural lavage surfactant containing surfactant protein-A. We speculate that recombinant hydrophobic surfactant proteins or synthetic analogs of these proteins can be used for the design of new surfactant preparations that are relatively resistant to inactivation and therefore suitable for treatment of acute respiratory distress syndrome.