Published in

American Thoracic Society, American Journal of Respiratory Cell and Molecular Biology, 3(54), p. 341-349, 2016

DOI: 10.1165/rcmb.2015-0074oc

Links

Tools

Export citation

Search in Google Scholar

Alpha 1-antitrypsin Mitigates the Inhibition of Airway Epithelial Cell Repair by Neutrophil Elastase

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Neutrophil elastase (NE) activity is associated with many destructive lung diseases and is a predictor for structural lung damage in early cystic fibrosis (CF), which suggests normal maintenance of airway epithelium is prevented by uninhibited NE. However, limited data exist on how the NE activity in airways of very young children with CF affects function of the epithelia. The aim of this study was to determine if NE activity could inhibit epithelial homeostasis and repair and whether any functional effect was reversible by antiprotease alpha-1 antitrypsin (α1AT) treatment. Viability, inflammation, apoptosis, and proliferation were assessed in healthy non-CF and CF pediatric primary airway epithelial cells (pAEC non-CF and pAEC CF , respectively) during exposure to physiologically relevant NE. The effect of NE activity on pAEC CF wound repair was also assessed. We report that viability after 48 hours was significantly decreased by 100 nM NE in pAEC non-CF and pAEC CF owing to rapid cellular detachment that was accompanied by inflammatory cytokine release. Furthermore, both phenotypes initiated an apoptotic response to 100 nM NE, whereas ≥50 nM NE activity significantly inhibited the proliferative capacity of cultures. Similar concentrations of NE also significantly inhibited wound repair of pAEC CF , but this effect was reversed by the addition of α1AT. Collectively, our results demonstrate free NE activity is deleterious for epithelial homeostasis and support the hypothesis that proteases in the airway contribute directly to CF structural lung disease. Our results also highlight the need to investigate antiprotease therapies in early CF disease in more detail.