Published in

International Union of Crystallography, Journal of Applied Crystallography, 1(46), p. 76-87, 2013

DOI: 10.1107/s0021889812047620

Links

Tools

Export citation

Search in Google Scholar

Resonant X-ray scattering studies of epitaxial complex oxide thin films

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Resonant anomalous X-ray reflectivity (RAXR) is a powerful technique for measuring element-specific distribution profiles across surfaces and buried interfaces. Here, the RAXR technique is applied to characterize a complex oxide heterostructure, La0.6Sr0.4Co0.2Fe0.8O3−δ, on NdGaO3, and the effects of data sampling and model-dependent fitting procedures on the extracted elemental distribution profile are evaluated. The strontium profile through a 3.5 nm-thick film at 973 K and at an oxygen partial pressure of 150 Torr (1 Torr = 133.32 Pa) was determined from the measured RAXR spectra. The results demonstrate thatin situRAXR measurements can provide key insights into temperature- and environment-dependent elemental segregation processes, relevant, for example, in assessing the cathode performance of solid oxide fuel cells.