Published in

Elsevier, BBA - Biomembranes, 1(1565), p. 29-35, 2002

DOI: 10.1016/s0005-2736(02)00501-1

Links

Tools

Export citation

Search in Google Scholar

Brownian dynamics simulation of the unsaturated lipidic molecules oleic and docosahexaenoic acid confined in a cellular membrane

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A Brownian dynamics (BD) simulation of two unsaturated molecules, oleic and docosahexaenoic acid, in an environment that reproduces a cellular membrane, is presented. The results of the simulations, performed using mean-field potentials, were calibrated with experimental results obtained for oleic acid in a cellular membrane. The agreement between simulation and experimental results is excellent which validates subsequent simulation outcome for docosahexaenoic acid. This molecule is a major component of several cellular membranes thought to be involved in specific biological functions that require conformational changes of membrane components. The results for docosahexaenoic acid indicate that it is minimally influenced by temperature changes and that it presents great conformational variability.