Published in

Elsevier, Virology, 1(211), p. 296-301, 1995

DOI: 10.1006/viro.1995.1404

Links

Tools

Export citation

Search in Google Scholar

Mx1 but Not MxA Confers Resistance against Tick-Borne Dhori Virus in Mice

Journal article published in 1995 by Robert Thimme, Michael Frese ORCID, Georg Kochs, Otto Haller
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The interferon-induced nuclear Mx1 protein is responsible for innate resistance of mice to influenza virus. It has been unclear why mice are equipped with a powerful and specific defense mechanism against influenza viruses for which they are not natural hosts. Here, we show that Dhori virus, an influenza-like virus transmitted by ticks and known to infect small mammals, is sensitive to the Mx1 resistance mechanism. Influenza virus-susceptible BALB/c and C57BL/6 mice (lacking a functional Mx1 gene) developed severe disease symptoms and died within a few days after intraperitoneal infection with a lethal dose of Dhori virus. In contrast, Mx1(+)-congenic, influenza virus-resistant BALB.A2G-Mx1 and B6.A2G-Mx1 mice remained healthy and survived. The Mx1 resistance phenotype was expressed in cultured peritoneal macrophages and interferon-treated embryonic cells obtained from these mice. Moreover, stable lines of transfected mouse 3T3 cells constitutively expressing Mx1 protein were protected from Dhori virus infection. The MxA protein of human cells shows a high degree of sequence similarity to Mx1 but, unlike Mx1, inhibits a broad range of RNA viruses. Transgenic mice that permanently express the human MxA protein in various organs became resistant to infection with Thogoto virus but remained fully susceptible to Dhori virus. These in vivo results show that DHO virus is unique in being resistant to human MxA but susceptible to mouse Mx1 protein. They further indicate that the Mx1 system functions as a potent defense mechanism against tick-borne influenza-like viruses in mice.