Published in

Elsevier, Journal of Molecular Catalysis A: Chemical, 1-2(286), p. 63-69, 2008

DOI: 10.1016/j.molcata.2008.01.045

Links

Tools

Export citation

Search in Google Scholar

Zn- and La-modified TiO2 photocatalysts for the isomerization of norbornadiene to quadricyclane

Journal article published in 2008 by Ji-Jun Zou ORCID, Bin Zhu, Li Wang, Xiangwen Zhang, Zhentao Mi
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Zn-doped and La/Zn co-doped TiO2 nanoparticles were prepared by sol–gel method and utilized as the photocatalysts for the isomerization of norbornadiene to quadricyclane that has significant potential for solar energy storage and high-energy fuel synthesis. For Zn-doped samples, Zn ions do not enter the TiO2 lattice, but distribute on the particle surface in the form of ZnO crystallites. These crystallites inhibit the agglomeration, growth and anatase-to-rutile phase transformation of TiO2. The prepared particles contain considerable amount of surface-bound OHs, especially for 1%Zn/TiO2. A red shift in the optical absorption is observed due to the electron transfer between TiO2 and ZnO. In the photocatalytic isomerization reaction, Zn-doped TiO2 exhibits higher activity than homogenous sensitizer like Ethyl Michler's Keton, and 1%Zn/TiO2 produces the highest yield of quadricyclane. To further enhance the activity, 1%Zn/TiO2 was co-doped with La. La2O3 crystallites also distribute on the surface of TiO2, similar to the case of ZnO. The particle size is reduced to