Published in

Elsevier, Progress in Neurobiology, 6(69), p. 375-390, 2003

DOI: 10.1016/s0301-0082(03)00085-6

Links

Tools

Export citation

Search in Google Scholar

Dopamine: a potential substrate for synaptic plasticity and memory mechanisms

Journal article published in 2003 by Thérèse M. Jay ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It is only recently that a number of studies on synaptic plasticity in the hippocampus and other brain areas have considered that a heterosynaptic modulatory input could be recruited as well as the coincident firing of pre- and post-synaptic neurons. So far, the strongest evidence for such a regulation has been attributed to dopaminergic (DA) systems but other modulatory pathways have also been considered to influence synaptic plasticity. This review will focus on dopamine contribution to synaptic plasticity in different brain areas (hippocampus, striatum and prefrontal cortex) with, for each region, a few lines on the distribution of DA projections and receptors. New insights into the possible mechanisms underlying these plastic changes will be considered. The contribution of various DA systems in certain forms of learning and memory will be reviewed with recent advances supporting the hypothesis of similar cellular mechanisms underlying DA regulation of synaptic plasticity and memory processes in which the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway has a potential role. To summarize, endogenous DA, which depends on the activity patterns of DA midbrain neurons in freely moving animals, appears as a key regulator in specific synaptic changes observed at certain stages of learning and memory and of synaptic plasticity.