Published in

Nature Research, Scientific Reports, 1(5), 2015

DOI: 10.1038/srep15414

Links

Tools

Export citation

Search in Google Scholar

Ablation of CD8α+ dendritic cell mediated cross-presentation does not impact atherosclerosis in hyperlipidemic mice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractClinical complications of atherosclerosis are almost exclusively linked to destabilization of the atherosclerotic plaque. Batf3-dependent dendritic cells specialize in cross-presentation of necrotic tissue-derived epitopes to directly activate cytolytic CD8 Tcells. The mature plaque (necrotic, containing dendritic cells and CD8 Tcells) could offer the ideal environment for cross-presentation, resulting in cytotoxic immunity and plaque destabilization. Ldlr−/− mice were transplanted with batf3−/− or wt bone marrow and put on a western type diet. Hematopoietic batf3 deficiency sharply decreased CD8α+ DC numbers in spleen and lymph nodes (>80%; P < 0,001). Concordantly, batf3−/− chimeras had a 75% reduction in OT-I cross-priming capacity in vivo. Batf3−/− chimeric mice did not show lower Tcell or other leukocyte subset numbers. Despite dampened cross-presentation capacity, batf3−/− chimeras had equal atherosclerosis burden in aortic arch and root. Likewise, batf3−/− chimeras and wt mice revealed no differences in parameters of plaque stability: plaque Tcell infiltration, cell death, collagen composition and macrophage and vascular smooth muscle cell content were unchanged. These results show that CD8α+ DC loss in hyperlipidemic mice profoundly reduces cross-priming ability, nevertheless it does not influence lesion development. Taken together, we clearly demonstrate that CD8α+ DC-mediated cross-presentation does not significantly contribute to atherosclerotic plaque formation and stability.