Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Toxicology Letters, 1(240), p. 22-31, 2016

DOI: 10.1016/j.toxlet.2015.10.004

Links

Tools

Export citation

Search in Google Scholar

Evaluation and identification of dioxin exposure biomarkers in human urine by high-resolution metabolomics, multivariate analysis and in vitro synthesis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A previous high-resolution metabolomic study pointed out a dysregulation of urinary steroids and bile acids in human cases of acute dioxin exposure. A subset of 24 compounds was highlighted as putative biomarkers. The aim of the current study was i) to evaluate the 24 biomarkers in an independent human cohort exposed to dioxins released from the incineration fumes of a municipal waste incinerator and; ii) to identify them by comparison with authentic chemical standards and biosynthesised products obtained with in vitro metabolic reactions. An orthogonal projection to latent structures discriminant analysis built on biomarker profiles measured in the intoxicated cohort and the controls separated both groups with reported values of 93.8%; 100% and 87.5% for global accuracy; sensitivity and specificity; respectively. These results corroborated the 24 compounds as exposure biomarkers; but a definite identification was necessary for a better understanding of dioxin toxicity. Dehydroepiandrosterone 3β-sulfate, androsterone 3α-glucuronide, androsterone 3α-sulfate, pregnanediol 3α-glucuronide and 11-ketoetiocholanolone 3α-glucuronide were identified by authentic standards. Metabolic reactions characterised four biomarkers: glucuronide conjugates of 11β-hydroxyandrosterone; glycochenodeoxycholic acid and glycocholic acid produced in human liver microsomes and glycoursodeoxycholic acid sulfate generated in cytosol fraction. The combination of metabolomics by high-resolution mass spectrometry with in vitro metabolic syntheses confirmed a perturbed profile of steroids and bile acids in human cases of dioxin exposure.