Published in

The Geological Society, Geological Society Special Publications, 1(76), p. 325-343, 1993

DOI: 10.1144/gsl.sp.1993.076.01.16

Links

Tools

Export citation

Search in Google Scholar

Orogenic uplift and collapse, crustal thickness, fabrics and metamorphic phase changes: The role of eclogites

Journal article published in 1993 by J. F. Dewey, P. D. Ryan, T. B. Andersen ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Coesite-bearing eclogites in several deep crustal metamorphic assemblages now exposed in extensionally-collapsed orogens indicate the tectonic denudation of more than 90 km of crustal rocks and pre-collapsed crustal thicknesses of at least 120 km. For mountain ranges and orogenic plateaux up to 5 km in elevation and average crustal densities of about 2.8, crustal thickness cannot exceed about 80 km unless pre-shortening crustal/lithosphere thickness ratios were less than 0.135 or some way can be found to preferentially thicken the lithospheric mantle. This problem can be avoided and very thick orogenic crusts built up if granulite facies rocks transform to denser eclogite facies during shortening, where the petrographic Moho is continuously depressed below a density/seismic velocity Moho buffered at about 70 km and mountains at about 3 km. Advective thinning of the lithosphere combined with the resultant heating and eclogite to sillimanite-granulite/amphibolite transformation causes surface uplift of about 2 km, a rapid change in isostatic compensation level, and a switch from a shortening to an extensional/collapse regime. We have developed a simple numerical model based upon field observations in southwestern Norway in which coherent regional-scale transformation of lower crustal rocks to eclogite facies during lithospheric shortening is followed by heating, transformation of eclogite to amphibolite and granulite, extension, and crustal thinning by coaxial then non-coaxial mechanisms. The model also explains strong lower crustal layering (eclogite and other lenses in horizontally-extended amphibolites), regionally horizontal gneissic fabrics, rapid return from orogenic to 'normal' crustal thickness with minor erosion, the lateral and vertical juxtaposition of low-grade and high-grade rocks and rapid marine transgression shortly after orogeny.