Published in

EMBO Press, The EMBO Journal, 2014

DOI: 10.1002/embj.201386825

Links

Tools

Export citation

Search in Google Scholar

Key regulators control distinct transcriptional programmes in blood progenitor and mast cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Despite major advances in the generation of genome-wide binding maps, the mechanisms by which transcription factors (TFs) regulate cell type identity have remained largely obscure. Through comparative analysis of 10 key haematopoietic TFs in both mast cells and blood progenitors, we demonstrate that the largely cell type-specific binding profiles are not opportunistic, but instead contribute to cell type-specific transcriptional control, because (i) mathematical modelling of differential binding of shared TFs can explain differential gene expression, (ii) consensus binding sites are important for cell type-specific binding and (iii) knock-down of blood stem cell regulators in mast cells reveals mast cell-specific genes as direct targets. Finally, we show that the known mast cell regulators Mitf and c-fos likely contribute to the global reorganisation of TF binding profiles. Taken together therefore, our study elucidates how key regulatory TFs contribute to transcriptional programmes in several distinct mammalian cell types.