Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Immunology Letters, 1(55), p. 5-10

DOI: 10.1016/s0165-2478(96)02642-9

Links

Tools

Export citation

Search in Google Scholar

ICE-protease inhibitors block murine liver injury and apoptosis caused by CD95 or by TNF-α

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The two apoptosis receptors of mammalian cells, i.e. the 55 kDa TNF receptor (TNF-R1) and CD95 (Fas/APO1) are activated independently of each other, however, their signaling involves a variety of ICE-related proteases [I]. We used a cell-permeable inhibitor of ICE-like protease activity to examine in vivo whether post-receptor signaling of TNF and CD95 are fully independent processes. Mice pretreated with the inhibitor, Z-VAD-fluoromethylketone (FMK) were dose-dependently protected from liver injury caused by CD95 activation as determined by plasma alanine aminotransferase and also from hepatocyte apoptosis assessed by DNA fragmentation (ID50 = 0.1 mg/kg). A dose of 10 mg/kg protected mice also from liver injury induced by TNF-alpha. Similar results were found when apoptosis was initiated via TNF-alpha or via CD95 in primary murine hepatocytes (IC50 = 1.5 nM) or in various human cell lines. In addition to prevention, an arrest of cell death by Z-VAD-FMK was demonstrated in vivo and in vitro after stimulation of apoptosis receptors. These findings show in vitro and in vivo in mammals that CD95 and the TNF-alpha receptor share a distal proteolytic apoptosis signal.