Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Journal of Geophysical Research: Atmospheres, 12(118), p. 6688-6707

DOI: 10.1002/jgrd.50567

Links

Tools

Export citation

Search in Google Scholar

A simple model of global aerosol indirect effects

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically-based model expresses the aerosol indirect effect using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of aerosol indirect effects that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present day aerosol indirect effects as low as −5 W m-2 and as high as −0.3 W m-2 are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on aerosol indirect effect uncertainty on uncertainty in parameter values.