Published in

Hindawi, Mathematical Problems in Engineering, (2015), p. 1-12, 2015

DOI: 10.1155/2015/707269

Links

Tools

Export citation

Search in Google Scholar

Theoretic Framework and Finite Element Implementation on Progressive Collapse Simulation of Masonry Arch Bridge

Journal article published in 2015 by Weibing Peng, Ruodan Pan, Fei Dai ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The capacity that computer can solve more complex design problem is gradually increased. Progressive collapse simulation of masonry arch bridge needs a breakthrough in the current development limitations and then becomes more accurate and integrated. This paper proposes a theoretic framework and finite element implementation on progressive collapse simulation of masonry arch bridge. It is intended to develop a new large deformation element in OpenSees, which can be used for analyzing the collapse process of masonry arch bridge. A mathematical method for large deformation element is put forward by large deformation element. The feature model for bridge structure allows families of bridge components to be specified using constraints on geometry and topology. Geometric constraints are established in bridge components by feature dependence graph in the feature model for bridge. A bridge collapse simulation software system was developed according to such combined technologies. Results from our implementation show that the method can help to simulate the progressive collapse process of masonry arch bridge.