Published in

Wiley, Environmental and Molecular Mutagenesis, 8(53), p. 636-641, 2012

DOI: 10.1002/em.21732

Links

Tools

Export citation

Search in Google Scholar

Evidence of exposure to aristolochic acid in patients with urothelial cancer from a Balkan endemic nephropathy region of Romania

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recently, chronic Aristolochia poisoning was found responsible for the aetiology of Balkan endemic nephropathy (BEN) in Croatia, Serbia, and Bosnia, and diet was the likely route of exposure to aristolochic acid (AA). BEN, often associated with an increased incidence of upper urinary tract carcinoma (UUC), also affects residents of certain rural villages in Romania. AA is a nephrotoxin and human carcinogen that forms DNA adducts after metabolic activation, which induce characteristic TP53 mutations in urothelial tumours. Here we present the first evidence linking AA exposure to UUC in residents of an endemic region in the Romanian Mehedinti County. DNA was extracted from kidney and tumour tissue of seven patients who underwent nephroureterectomy for UUC and resided in BEN villages (endemic group). Five patients with UUC from nonendemic villages served as controls. AA-DNA adducts (7-(deoxyadenosin-N(6) -yl)-aristolactam I), established biomarkers of AA exposure, were identified by (32) P-postlabelling in renal DNA of six patients from the endemic group and in one of the nonendemic group (adduct levels ranged from 0.3 to 6.5 adducts per 10(8) nucleotides). Additionally, an A to T transversion in TP53, a base substitution characteristic of AA mutagenic activity was found in urothelial tumour DNA of one patient from the endemic group. Our results provide a molecular link to the cause of urothelial tumours in BEN regions of Romania indicating that AA is the common aetiological agent for BEN across its numerous geographical foci. Environ. Mol. Mutagen., 2012. © 2012 Wiley Periodicals, Inc.