Published in

American Chemical Society, Langmuir, 21(23), p. 10801-10806, 2007

DOI: 10.1021/la7017192

Links

Tools

Export citation

Search in Google Scholar

Bi-phobic Cellulose Fibers Derivatives via Surface Trifluoropropanoylation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The surface modification of cellulose fibers with 3,3,3-trifluoropropanoyl chloride (TFP) was studied in a toluene suspension. The characterization of the modified fibers was performed by elemental analysis, Fourier transform infrared (FTIR), 13C-solid-state NMR, X-ray diffraction, thermogravimetry, and surface analysis (XPS, ToF-SIMS, and contact angles measurements). The degree of substitution (DS) of the ensuing trifluoropropanoylated fibers ranged from less than 0.006 to 0.30, and in all instances the fibers' surface acquired a high hydrophobicity and lipophobicity resulting from a drastic reduction in its energy. The hydrolytic stability of these cellulose derivatives was also evaluated and shown to be permanent in time in the presence of neutral water, still appreciable in basic aqueous solution at pH 9, but, as expected quite poor at pH 12.