Published in

American Physiological Society, American Journal of Physiology - Heart and Circulatory Physiology, 3(309), p. H523-H528

DOI: 10.1152/ajpheart.00267.2015

Links

Tools

Export citation

Search in Google Scholar

Inhibition of cyclooxygenase attenuates the blood pressure response to plantar flexion exercise in peripheral arterial disease

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Prostanoids are produced during skeletal muscle contraction and subsequently stimulate muscle afferent nerves, thereby contributing to the exercise pressor reflex. Humans with peripheral arterial disease (PAD) have an augmented exercise pressor reflex, but the metabolite(s) responsible for this augmented response is not known. We tested the hypothesis that intravenous injection of ketorolac, which blocks the activity of cyclooxygenase, would attenuate the rise in mean arterial blood pressure (MAP) and heart rate (HR) evoked by plantar flexion exercise. Seven PAD patients underwent 4 min of single-leg dynamic plantar flexion (30 contractions/min) in the supine posture (workload: 0.5–2.0 kg). MAP and HR were measured on a beat-by-beat basis; changes from baseline in response to exercise were determined. Ketorolac did not affect MAP or HR at rest. During the first 20 s of exercise with the most symptomatic leg, ΔMAP was significantly attenuated by ketorolac (2 ± 2 mmHg) compared with control (8 ± 2 mmHg, P = 0.005), but ΔHR was similar (6 ± 2 vs. 5 ± 1 beats/min). Importantly, patients rated the exercise bout as “very light” to “fairly light,” and average pain ratings were 1 of 10. Ketorolac had no effect on perceived exertion or pain ratings. Ketorolac also had no effect on MAP or HR in seven age- and sex-matched healthy subjects who performed a similar but longer plantar flexion protocol (workload: 0.5–7.0 kg). These data suggest that prostanoids contribute to the augmented exercise pressor reflex in patients with PAD.