Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, American Journal of Physiology - Renal Physiology, 3(296), p. F583-F589, 2009

DOI: 10.1152/ajprenal.90359.2008

Links

Tools

Export citation

Search in Google Scholar

Glomerular surface area is normalized in mice born with a nephron deficit: No role for AT(1) receptors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We examined whether deficits in glomerular capillary surface area associated with a congenital nephron deficit could be corrected by glomerular hypertrophy. Using unbiased stereological techniques, we examined the time course and mode of glomerular hypertrophy in mice lacking one allele for glial cell line-derived neurotrophic factor (GDNF). These GDNF heterozygous (Het) mice are born with ∼30% less nephrons than wild-type (WT) littermates. An additional group of GDNF Het mice received the angiotensin type 1 (AT1)-receptor antagonist candesartan (Cand; 10 mg·kg−1·day−1) from 5 wk of age to determine the role of AT1receptors in the compensatory hypertrophy. At 10 wk of age, the total volume of renal corpuscles, glomerular capillary surface area, and length of glomerular capillaries in the kidneys of GDNF Het mice were all markedly (∼45%) less than that of WT mice ( P < 0.001). However, by 30 wk, and persisting at 60 wk of age, GDNF Het and WT mice did not significantly differ in any of these parameters. Furthermore, conscious 24-h mean arterial pressure (MAP) did not differ between GDNF Het and WT mice at any time point. MAP of GDNF Het-Cand mice was 20–30 mmHg less than that of GDNF Het-vehicle mice at all three ages, but Cand treatment did not significantly alter glomerular capillary dimensions. In conclusion, we have demonstrated that the deficit in glomerular capillary surface area associated with a congenital nephron deficit can be corrected for in adulthood by an increase in the total length of glomerular capillaries. This process does not require AT1receptor activation.