Published in

Elsevier, International Journal of Developmental Neuroscience, 1(27), p. 27-35

DOI: 10.1016/j.ijdevneu.2008.10.005

Links

Tools

Export citation

Search in Google Scholar

Importance of adrenergic receptors in prenatally induced cognitive impairment in the domestic chick

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the domestic chick, mild hypoxia (24h of 14% oxygen) at two stages of embryonic development results in post-hatch memory deficiencies tested using a discriminated bead avoidance task. The nature of the memory loss depends on the gestational age at which the hypoxia occurs. Hypoxia on embryonic day 10 (E10) of a 21 day incubation results in chicks with no short-term memory 10 min after training, whereas hypoxia on day 14 (E14) results in chicks with good labile memory 30 min after training but no consolidation of memory into permanent storage (120 min). Hypoxia at E14 is associated with increased plasma levels of noradrenaline and therefore we suggest that altered catecholamine exposure within the brain contributes to cognitive problems by modifying the responsiveness of brain beta-adrenoceptors. In ovo administration of noradrenaline, or the beta(2)-adrenoceptor agonist formoterol, at E14 had the same effect on memory consolidation as hypoxia. Following hypoxia at E14, memory could be rescued after training by central injection of a beta(3)-adrenoceptor agonist, but not by a beta(2)-adrenoceptor agonist. The differences in the responsiveness of memory processing to beta(2)-adrenoceptor agonists suggests alterations to the receptors or downstream of the receptor activation. However, both types of beta-adrenoceptor agonists rescued memory in E10 treated chicks implying that at this age hypoxia does not affect the receptors. In summary, hypoxia or increased levels of stress hormones during incubation alters beta-adrenoceptor responsiveness; the outcome of the insult depends upon the cellular developmental processes at a given embryonic stage.