Published in

Wiley Open Access, FASEB Journal, 13(16), p. 1-20, 2002

DOI: 10.1096/fj.02-0041fje

Links

Tools

Export citation

Search in Google Scholar

α-Synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Alpha-synuclein (alpha-SN) is a ubiquitous protein that is especially abundant in the brain and has been postulated to play a central role in the pathogenesis of Parkinson's disease, Alzheimer's disease, and other neurodegenerative disorders. However, little is known about the neuronal functions of alpha-SN and the molecular and cellular mechanisms underlying neuronal loss. Here, we show that alpha-SN plays dual roles of neuroprotection and neurotoxicity depending on its concentration or level of expression. At nanomolar concentrations, a-SN protected neurons against serum deprivation, oxidative stress, and excitotoxicity through the PI3/Akt signaling pathway, and its protective effect was increased by Bcl-2 overexpression. Conversely, at both low micromolar and overexpressed levels in the cell, alpha-SN resulted in cytotoxicity. This might be related to decreased Bcl-xL expression and increased bax expression, which is subsequently followed by cytochrome c release and caspase activation and also by microglia-mediated inflammatory responses via the NFkappaB and mitogen-activated protein kinase pathways.