Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, FEMS Microbiology Ecology, 2(75), p. 205-217, 2010

DOI: 10.1111/j.1574-6941.2010.01011.x

Links

Tools

Export citation

Search in Google Scholar

Quorum quenching in cultivable bacteria from dense marine coastal microbial communities

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Acylhomoserine lactone (AHLs)-mediated quorum-sensing (QS) processes seem to be common in the marine environment and among marine pathogenic bacteria, but no data are available on the prevalence of bacteria capable of interfering with QS in the sea, a process that has been generally termed 'quorum quenching' (QQ). One hundred and sixty-six strains isolated from different marine dense microbial communities were screened for their ability to interfere with AHL activity. Twenty-four strains (14.4%) were able to eliminate or significantly reduce N-hexanoyl-l-homoserine lactone activity as detected by the biosensor strain Chromobacterium violaceum CV026, a much higher percentage than that reported for soil isolates, which reinforces the ecological role of QS and QQ in the marine environment. Among these, 15 strains were also able to inhibit N-decanoyl-l-homoserine lactone activity and all of them were confirmed to enzymatically inactivate the AHL signals by HPLC-MS. Active isolates belonged to nine different genera of prevalently or exclusively marine origin, including members of the Alpha- and Gammaproteobacteria (8), Actinobacteria (2), Firmicutes (4) and Bacteroidetes (1). Whether the high frequency and diversity of cultivable bacteria with QQ activity found in near-shore marine isolates reflects their prevalence among pelagic marine bacterial communities deserves further investigation in order to understand the ecological importance of AHL-mediated QS and QQ processes in the marine environment.