Published in

Elsevier, BBA - Bioenergetics, 4(1807), p. 437-443, 2011

DOI: 10.1016/j.bbabio.2011.01.007

Links

Tools

Export citation

Search in Google Scholar

First solid-state NMR analysis of uniformly 13C-enriched major light-harvesting complexes from Chlamydomonas reinhardtii and identification of protein and cofactor spin clusters

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The light-harvesting complex II (LHCII) is the main component of the antenna system of plants and green algae and plays a major role in the capture of sun light for photosynthesis. The LHCII complexes have also been proposed to play a key role in the optimization of photosynthetic efficiency through the process of state 1-state 2 transitions and are involved in down-regulation of photosynthesis under excess light by energy dissipation through non-photochemical quenching (NPQ). We present here the first solid-state magic-angle spinning (MAS) NMR data of the major light-harvesting complex (LHCII) of Chlamydomonas reinhardtii, a eukaryotic green alga. We are able to identify nuclear spin clusters of the protein and of its associated chlorophyll pigments in ¹³C-¹³C dipolar homonuclear correlation spectra on a uniformly ¹³C-labeled sample. In particular, we were able to resolve several chlorophyll 13¹ carbon resonances that are sensitive to hydrogen bonding to the 13¹-keto carbonyl group. The data show that ¹³C NMR signals of the pigments and protein sites are well resolved, thus paving the way to study possible structural reorganization processes involved in light-harvesting regulation through MAS solid-state NMR.