Published in

American Chemical Society, ACS Applied Materials and Interfaces, 7(2), p. 1824-1828, 2010

DOI: 10.1021/am100270b

Links

Tools

Export citation

Search in Google Scholar

Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Highly ordered treelike Si/ZnO hierarchical nanostructures are successfully prepared in a large scale by combining two common techniques, viz., photolithography-assisted wafer-scale fabrication of Si nanopillars and bottom-up hydrothermal growth of ZnO nanorods. Silver nanoparticles are decorated onto the nanotrees by photochemical reduction and deposition. The Si/ZnO/Ag hybrid nanotrees are employed as SERS-active substrates, which exhibit good performance in terms of high sensitivity and good reproducibility. In addition to the SERS application, such ordered Si/ZnO arrays might also find potential applications in light-emitting diodes and solar cells.