Published in

Elsevier, American Journal of Cardiology, 11(114), p. 1663-1669

DOI: 10.1016/j.amjcard.2014.08.037

Links

Tools

Export citation

Search in Google Scholar

Influence of Epicardial and Visceral Fat on Left Ventricular Diastolic and Systolic Functions in Patients After Myocardial Infarction

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Obesity has been associated with subclinical left ventricular (LV) diastolic dysfunction and increased risk of heart failure. Few data are available on the relative contribution of adiposity distribution and changes in myocardial structure and function. We evaluated the influence of visceral versus subcutaneous abdominal adipose tissue and epicardial fat on LV diastolic function after acute myocardial infarction. One month after acute myocardial infarction, 225 consecutive patients were prospectively enrolled and underwent anthropometric evaluation, bioimpedance analysis, detailed echocardiography, and multidetector 64-slice computed tomography scan for quantification of epicardial fat volume (EFV) and of total, subcutaneous and visceral abdominal fat areas. We found a significant association between LV diastolic dysfunction parameters and body mass index, fat-mass percentage, and waist-to-height ratio. E' velocity and E/E' ratio were correlated with total and visceral abdominal fat (r = -0.27, p <0.001 and r = 0.21, p <0.01, respectively), but not with subcutaneous fat. After multivariate analysis, increasing EFV was associated with decreased E' velocity (adjusted β -0.11, 95% confidence interval -0.19 to -0.03; p <0.01) and increased E/E' ratio (adjusted β 0.19, 95% confidence interval 0.07 to 0.31, p <0.01). Patients with diastolic dysfunction showed higher EFV (116.7 ± 67.9 ml vs 93.0 ± 52.3 ml, p = 0.01), and there was a progressive increase in EFV according to diastolic dysfunction grades (p = 0.001). None of the adiposity parameters correlated with ejection fraction or S' velocities. In conclusion, in patients after myocardial infarction, impaired LV diastolic function was associated with increased adiposity, especially with visceral and central fat parameters. Increasing EFV was independently associated with worse LV diastolic function.