Taylor and Francis Group, Small GTPases, 4(3), p. 209-212, 2012
DOI: 10.4161/sgtp.20960
Full text: Download
During embryogenesis, the heart is one of the first organs to develop. Its formation requires a complex combination of migration of cardiac precursors to the ventral midline coupled with the fusion of these cardiogenic fields and subsequent cellular reorganization to form a linear heart tube. A finely controlled choreography of cell proliferation, adhesion, contraction, and movement drives the heart tube to loop and subsequently septate to form the four-chambered mammalian heart we are familiar with. Defining how this plethora of cellular processes is controlled both spatially and temporally is a scientific feat that has fascinated researchers for decades. Unfortunately, the complex nature of this organ's development also makes it a prime target for mutation-induced malformation, as evidenced by the multitude of prevalent congenital heart disorders identified that afflict up to 1% of the population.