Published in

Wiley, Magnetic Resonance in Medicine, 4(52), p. 789-797, 2004

DOI: 10.1002/mrm.20227

Links

Tools

Export citation

Search in Google Scholar

Defining a local arterial input function for perfusion MRI using independent component analysis

Journal article published in 2004 by Fernando Calamante, Morten Mørup ORCID, Lars Kai Hansen
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Quantification of cerebral blood flow (CBF) using dynamic-susceptibility contrast MRI relies on the deconvolution of the arterial input function (AIF), which is commonly estimated from the signal changes in a major artery. However, it has been shown that the presence of bolus delay/dispersion between the artery and the tissue of interest can be a significant source of error. These effects could be minimized if a local AIF were used, although the measurement of a local AIF can be problematic. This work describes a new methodology to define a local AIF using independent component analysis (ICA). The methodology was tested on data from patients with various cerebrovascular abnormalities and compared to the conventional approach of using a global AIF. The new methodology produced higher CBF and shorter mean transit time values (compared to the global AIF case) in areas with distorted AIFs, suggesting that the effects of delay/dispersion are minimized. The minimization of these effects using the calculated local AIF should lead to a more accurate quantification of CBF, which can have important implications for diagnosis and management of patients with cerebral ischemia.