Published in

Oxford University Press, Biology of Reproduction, 3(77), p. 551-559, 2007

DOI: 10.1095/biolreprod.107.061358

Links

Tools

Export citation

Search in Google Scholar

CATSPER Channel-Mediated Ca2+ Entry into Mouse Sperm Triggers a Tail-to-Head Propagation1

Journal article published in 2007 by Jingsheng Xia, David Reigada ORCID, Claire H. Mitchell, Dejian Ren
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Many Ca(2+) channel proteins have been detected in mammalian sperm, but only the four CATSPER channels have been clearly shown to be required for male fertility. Ca(2+) entry through the principal piece-localized CATSPER channels has been implicated in the activation of hyperactivated motility. In the present study, we show that the Ca(2+) entry also triggers a tail-to-head Ca(2+) propagation in the mouse sperm. When activated with 8-Br-cAMP, 8-Br-cGMP, or alkaline depolarization, a CATSPER-dependent increase in intracellular Ca(2+) concentration starts in the principal piece, propagates through the midpiece, and reaches the head in a few seconds. The Ca(2+) propagation through the midpiece leads to a Ca(2+)-dependent increase in NADH fluorescence. In addition, CatSper1-mutant sperm have lower intracellular ATP levels than wild-type sperm. Thus, a Ca(2+) influx in the principal piece through CATSPER channels can not only initiate hyperactivated motility, but can also trigger a tail-to-head Ca(2+) propagation that leads to an increase in [NADH] and may regulate ATP homeostasis.