Dissemin is shutting down on January 1st, 2025

Published in

Hans Publishers, Astronomy & Astrophysics, 2(475), p. 585-595

DOI: 10.1051/0004-6361:20077487

Links

Tools

Export citation

Search in Google Scholar

The early spectral evolution of SN 2004dt

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Aims. We study the optical spectroscopic properties of Type Ia Supernova (SN Ia) 2004dt, focusing our attention on the early epochs. Methods. Observation triggered soon after the SN 2004dt discovery allowed us to obtain a spectrophotometric coverage from day -10 to almost one year (~353 days) after the B band maximum. Observations carried out on an almost daily basis allowed us a good sampling of the fast spectroscopic evolution of SN 2004dt in the early stages. To obtain this result, low-resolution, long-slit spectroscopy was obtained using a number of facilities. Results. This supernova, which in some absorption lines of its early spectra showed the highest degree of polarization ever measured in any SN Ia, has a complex velocity structure in the outer layers of its ejecta. Unburnt oxygen is present, moving at velocities as high as ~16,700 km/s, with some intermediate-mass elements (Mg, Si, Ca) moving equally fast. Modeling of the spectra based on standard density profiles of the ejecta fails to reproduce the observed features, whereas enhancing the density of outer layers significantly improves the fit. Our analysis indicates the presence of clumps of high-velocity, intermediate-mass elements in the outermost layers, which is also suggested by the spectropolarimetric data. ; Comment: 13 pages, 15 figures, accepted for pubblication in Astronomy and Astrophysics