Dissemin is shutting down on January 1st, 2025

Published in

Springer (part of Springer Nature), Climatic Change, 3-4(81), p. 283-312

DOI: 10.1007/s10584-006-9159-6

Links

Tools

Export citation

Search in Google Scholar

Integrated assessment of changes in flooding probabilities due to climate change

Journal article published in 2007 by Thomas Kleinen ORCID, Gerhard Petschel-Held
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An approach to considering changes in flooding probability in the integrated assessment of climate change is introduced. A reduced-form hydrological model for flood prediction and a downscaling approach suitable for integrated assessment modeling are presented. Based on these components, the fraction of world population living in river basins affected by changes in flooding probability in the course of climate change is determined. This is then used as a climate impact response function in order to derive emission corridors limiting the population affected. This approach illustrates the consideration of probabilistic impacts within the framework of the tolerable windows approach. Based on the change in global mean temperature, as calculated by the simple climate models used in integrated assessment, spatially resolved changes in climatic variables are determined using pattern scaling, while natural variability in these variables is considered using twentieth century deviations from the climatology. Driven by the spatially resolved climate change, the hydrological model then aggregates these changes to river basin scale. The hydrological model is subjected to a sensitivity analysis with regard to the water balance, and the uncertainty arising through the different projections of changes in mean climate by differing climate models is considered by presenting results based on different models. The results suggest that up to 20% of world population live in river basins that might inevitably be affected by increased flood events in the course of global warming, depending on the climate model used to estimate the regional distribution of changes in climate.