Published in

Elsevier, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 12(1833), p. 3507-3517, 2013

DOI: 10.1016/j.bbamcr.2013.07.024

Links

Tools

Export citation

Search in Google Scholar

When ER stress reaches a dead end

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Endoplasmic reticulum (ER) stress is a common feature of several physiological and pathological conditions affecting the function of the secretory pathway. To restore ER homeostasis, an orchestrated signaling pathway is engaged that is known as the unfolded protein response (UPR). The UPR has a primary function in stress adaptation and cell survival; however under irreversible ER stress a switch to pro-apoptotic signaling events induces apoptosis of damaged cells. The mechanisms that initiate ER stress-dependent apoptosis are not fully understood. Several pathways have been described where we highlight the participation of the BCL-2 family of proteins and ER calcium release. In addition, recent findings also suggest that microRNAs and oxidative stress are relevant players on the transition from adaptive to cell death programs. Here we provide a global and integrated overview of the signaling networks that may determine the elimination of cell under chronic ER stress. This article is part of a Special Issue entitled:Cell Death Pathways.