Published in

Elsevier, Experimental Neurology, 2(222), p. 235-242, 2010

DOI: 10.1016/j.expneurol.2009.12.034

Links

Tools

Export citation

Search in Google Scholar

Aggravated experimental autoimmune encephalomyelitis in IL-15 knockout mice

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

IL-15 initially identified as a T proliferating cytokine has several structural and biological similarities with IL-2 and has been associated with a number of autoimmune diseases. Because of the scarcity of information available on the role of IL-15 in MS pathogenesis, we have investigated how the absence of IL-15 affected the development of experimental autoimmune encephalomyelitis, a mouse model of MS. Following immunization of IL-15(-/-) and C57BL/6 mice with MOG(35-55), we observed a more severe neurological impairment in the IL-15 knockout mice than in the wild-type group. The enhanced disease severity in IL-15(-/-) mice was associated with greater demyelination in the spinal cord, increased immune cell infiltration and inflammation. These events may be related to the higher CD4/CD8 ratio and the almost absent NK cell activity, congenital immune features of IL-15KO mice. Moreover, we found that the fractalkine receptor CX3CR1 was overexpressed in the spinal cord of IL-15(-/-) mice, mainly localized on infiltrating CD8(+) T cells. How these findings are contributing to the aggravated EAE development in IL-15 KO mice remain unclear and need to be further investigated.