Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Inorganic Biochemistry, 3(98), p. 469-472

DOI: 10.1016/j.jinorgbio.2003.12.015

Links

Tools

Export citation

Search in Google Scholar

Iron(III) complexation of Desferrioxamine B encapsulated in apoferritin

Journal article published in 2004 by José M. Domínguez Vera ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The dissociation of apoferritin into subunits at pH 2 followed by its reformation at pH 7.4 in presence of Desferrioxamine B (DFO) gives rise to a solution containing three DFO molecules trapped within the apoferritin (Apo-ferritin:DFO) and DFO molecules outside it. The untrapped DFO molecules in the solution were removed from Apo-ferritin:DFO by exhaustive dialysis until a negligible concentration was confirmed. The addition of Fe(III) to the dialyzed solution of Apo-ferritin:DFO resulted in the appearance of an orange-red color. The UV-Vis spectrum of this solution shows the characteristic absorption of the [DFOFe] complex centered at 425 nm. Following a similar procedure as for DFO, only one molecule of [DFOFe] was trapped in the apoferritin. The above results demonstrate the possibility of encapsulating a large molecule such as DFO in the apoferritin and, more interestingly, the ability of these DFO-encapsulated molecules to react with Fe(III) to give rise to an encapsulated [DFOFe] complex within the apoferritin.