Published in

Wiley, Human Mutation: Variation, Informatics and Disease, 2(25), p. 118-124, 2005

DOI: 10.1002/humu.20170

Links

Tools

Export citation

Search in Google Scholar

Functional significance of a deep intronic mutation in the ATM gene and evidence for an alternative exon 28a

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Screening for ATM mutations is usually performed using genomic DNA as a template for PCR amplification across exonic regions, with the consequence that deep intronic sequences are not analyzed. Here we report a novel pseudoexon-retaining deep intronic mutation (IVS28-159A>G; g.75117A>G based on GenBank U82828.1) in a patient with ataxia-telangiectasia (A-T), as well as the identification of a previously unrecognized alternative exon in the ATM gene (exon 28a) expressed in lymphoblastoid cell lines (LCL) derived from normal individuals. cDNA analysis using the A-T patient's LCL showed the retention of two aberrant intronic segments of 112 and 190 nt between exons 28 and 29. Minigenes were constructed to determine the functional significance of two genomic changes in the region of aberrant splicing: IVS28-193C>T (g.75083C>T) and IVS28-159A>G, revealing that: 1) the first is a polymorphism; 2) IVS28-159A>G weakens the 5' splice site of the alternative exon 28a and activates a cryptic 5' splice site (ss) 83 nt downstream; and 3) wild-type constructs also retain a 29-nt segment (exon 28a) as part of both the 112- and 190-nt segments. Maximum entropy estimates of ss strengths corroborate the cDNA and minigene findings. Such mutations may prove relevant in planning therapy that targets specific splicing aberrations.