Published in

Wiley, Journal of Neuroscience Research, 4(58), p. 475-479, 1999

DOI: 10.1002/(sici)1097-4547(19991115)58:4<475::aid-jnr1>3.0.co;2-o

Links

Tools

Export citation

Search in Google Scholar

Corelease of two functionally opposite neurotransmitters by retinal amacrine cells: Experimental evidence and functional significance

Journal article published in 1999 by Carlos B. Duarte ORCID, Paulo F. Santos, Arsélio P. Carvalho
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Dale's law postulates that a neuron releases the same neurotransmitter from all its branches. In the case of multiple neurotransmitters it would require all transmitters to be released from all branches. The retinal cholinergic amacrine cells contain and release gamma-aminobutyric (GABA) and, therefore, if GABA and acetylcholine (ACh) are released at the same sites, this could mean that amacrine cells simultaneously excite and inhibit postsynaptic cells. Conversely, if the two neurotransmitters are released at different synapses, or if their release is regulated in a distinct manner, they may play different physiological roles. Recent studies carried out in cultured cholinergic amacrine-like neurons showed that Ca(2+)-dependent release of ACh and GABA have a different sensitivity to membrane depolarization, to the effect of blockers of voltage gated Ca(2+) channels (VGCC) and to the effect of presynaptic A(1) adenosine receptors. Therefore, it is proposed that in retinal amacrine cells the Ca(2+)-dependent release of ACh and GABA occurs at distinct cellular locations. The possible nature of these release sites and the physiological significance of this model are discussed in this review.