Published in

American Chemical Society, Journal of the American Chemical Society, 1(134), p. 63-66, 2011

DOI: 10.1021/ja208600v

Links

Tools

Export citation

Search in Google Scholar

Determining Charge Transport Pathways through Single Porphyrin Molecules Using Scanning Tunneling Microscopy Break Junctions

Journal article published in 2011 by Zhihai Li, Eric Borguet ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Charge transport in a porphyrin with four identical pyridyl substituents, 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (TPyP), was investigated using the scanning tunneling microscopy break junction method. To determine the dominant pathway, we studied two structurally similar porphyrins, o-DPyP and p-DPyP. Our experiments reveal that charge transport through TPyP in a break junction configuration does not follow the traditional assumption, i.e., the shortest path between the neighboring side groups. Instead, the charge transport pathway was dominated by the farthest anchoring groups. Furthermore, these single molecule experiments can distinguish between the two structural isomers, which is important in molecular discrimination, porphyrin chemistry, and molecular electronics.