Published in

IWA Publishing, Water Science and Technology, 7(70), p. 1251

DOI: 10.2166/wst.2014.347

Links

Tools

Export citation

Search in Google Scholar

Challenges encountered when expanding activated sludge models: A case study based on N2O production

Journal article published in 2014 by L. J. P. Snip, R. Boiocchi, X. Flores Alsina ORCID, U. Jeppsson, K. V. Gernaey ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It is common practice in wastewater engineering to extend standard activated sludge models (ASMs) with extra process equations derived from batch experiments. However, such experiments have often been performed under conditions different from the ones normally found in wastewater treatment plants (WWTPs). As a consequence, these experiments might not be representative for full-scale performance, and unexpected behaviour may be observed when simulating WWTP models using the derived process equations. In this paper we want to highlight problems encountered using a simplified case study: a modified version of the Activated Sludge Model No. 1 (ASM1) is upgraded with nitrous oxide (N2O) formation by ammonia-oxidizing bacteria. Four different model structures have been implemented in the Benchmark Simulation Model No. 1 (BSM1). The results of the investigations revealed two typical difficulties: problems related to the overall mathematical model structure and problems related to the published set of parameter values. The paper describes the model implementation incompatibilities, the variability in parameter values and the difficulties of reaching similar conditions when simulating a full-scale activated sludge plant. Finally, the simulation results show large differences in oxygen uptake rates, nitritation rates and consequently the quantity of N2O emission (GN2O) using the different models.