Dissemin is shutting down on January 1st, 2025

Published in

Cambridge University Press, Journal of Glaciology, 193(55), p. 869-878, 2009

DOI: 10.3189/002214309790152537

Links

Tools

Export citation

Search in Google Scholar

Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large-scale ice-sheet models of Greenland

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSnowpack changes during the melt season are often not incorporated in modelling studies of the surface mass balance of the Greenland ice sheet. Densification of snow accelerates when meltwater is present, due to percolation and subsequent refreezing, and needs to be incorporated in ice-sheet models for ablation calculations. In this study, simple parameterizations to calculate surface melt, snow densification and meltwater retention are included as surface boundary conditions in a large-scale ice-sheet model of Greenland. Coupling the snow densification and meltwater-retention processes achieves a separation of volume and mass changes of the surface layer, in order to determine the surface melt contribution to runoff. Experiments for present-day conditions show that snow depth at the onset of melt, mean annual near-surface air temperature and the mean density of the annual snow layer are key factors controlling the quantity and spatial distribution of meltwater runoff above the equilibrium line on the Greenland ice sheet.