Dissemin is shutting down on January 1st, 2025

Published in

American Association of Immunologists, The Journal of Immunology, 8(183), p. 5319-5332, 2009

DOI: 10.4049/jimmunol.0901780

Links

Tools

Export citation

Search in Google Scholar

Receptor-Mediated and Lectin-Like Activities of Carp (Cyprinus carpio) TNF-α

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Functional characterization of TNF-alpha in species other than mammalian vertebrates is limited, and TNF-alpha has been studied in a limited number of fish species, primarily in vitro using recombinant proteins. Studies on TNF-alpha from different fish species so far pointed to several inconsistencies, in particular with respect to some receptor-mediated activities of fish TNF-alpha, such as the ability to directly activate phagocytes. In the present study a comprehensive analysis of in vitro as well as in vivo biological activities of two isoforms of carp TNF-alpha was performed. Our results show that carp TNF-alpha directly primes carp phagocytes and indirectly promotes typical receptor-mediated activities such as phagocyte activation by acting via endothelial cells. Additionally, for the first time in nonmammalian vertebrate species, the lectin-like activity of fish TNF-alpha homologs was investigated. Our results show an evolutionary conservation of function of this receptor-independent activity of TNF-alpha not only in cyprinid fish, but also in perciform and salmonid fish. The role of TNF-alpha in vivo, during infections of carp with the blood parasite Trypanoplasma borreli, was examined using three fundamentally different but complementary approaches: (1) inhibition of TNF-alpha expression, (2) overexpression of TNF-alpha, and (3) inhibition of shedding of membrane-bound TNF-alpha. Our results show that, also in fish, a tight regulation of TNF-alpha expression is important, since depletion or excess of TNF-alpha can make an important difference to survival of infection. Finally, we demonstrate a crucial protective role for membrane-bound TNF-alpha, which has a yet unexploited function in fish.