Published in

American Physical Society, Physical Review Letters, 20(98)

DOI: 10.1103/physrevlett.98.206802

Links

Tools

Export citation

Search in Google Scholar

Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated with Angle-Resolved Photoemission Spectroscopy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The unusual transport properties of graphene are the direct consequence of a peculiar band structure near the Dirac point. We determine the shape of the pi bands and their characteristic splitting, and find the transition from two-dimensional to bulk character for 1 to 4 layers of graphene by angle-resolved photoemission. By detailed measurements of the pi bands we derive the stacking order, layer-dependent electron potential, screening length, and strength of interlayer interaction by comparison with tight binding calculations, yielding a comprehensive description of multilayer graphene's electronic structure.