Published in

Elsevier, Journal of Biological Chemistry, 48(278), p. 48146-48153, 2003

DOI: 10.1074/jbc.m307295200

Links

Tools

Export citation

Search in Google Scholar

Structural Properties of Gerstmann-Sträussler-Scheinker Disease Amyloid Protein

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Prion protein (PrP) amyloid formation is a central feature of genetic and acquired forms of prion disease such as Gerstmann-Sträussler-Scheinker disease (GSS) and variant Creutzfeldt-Jakob disease. The major component of GSS amyloid is a PrP fragment spanning residues approximately 82-146. To investigate the determinants of the physicochemical properties of this fragment, we synthesized PrP-(82-146) and variants thereof, including entirely and partially scrambled peptides. PrP-(82-146) readily formed aggregates that were partially resistant to protease digestion. Peptide assemblies consisted of 9.8-nm-diameter fibrils having a parallel cross-beta-structure. Second derivative of infrared spectra indicated that PrP-(82-146) aggregates are primarily composed of beta-sheet (54%) and turn (24%) which is consistent with their amyloid-like properties. The peptide induced a remarkable increase in plasma membrane microviscosity of primary neurons. Modification of the amino acid sequence 106-126 caused a striking increase in aggregation rate, with formation of large amount of protease-resistant amorphous material and relatively few amyloid fibrils. Alteration of the 127-146 region had even more profound effects, with the inability to generate amyloid fibrils. These data indicate that the intrinsic properties of PrP-(82-146) are dependent upon the integrity of the C-terminal region and account for the massive deposition of PrP amyloid in GSS.