Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(449), p. 3522-3526

DOI: 10.1093/mnras/stv534

Links

Tools

Export citation

Search in Google Scholar

Chaos in navigation satellite orbits caused by the perturbed motion of the Moon

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Numerical simulations carried out over the past decade suggest that the orbits of the Global Navigation Satellite Systems are unstable, resulting in an apparent chaotic growth of the eccentricity. Here we show that the irregular and haphazard character of these orbits reflects a similar irregularity in the orbits of many celestial bodies in our Solar System. We find that secular resonances, involving linear combinations of the frequencies of nodal and apsidal precession and the rate of regression of lunar nodes, occur in profusion so that the phase space is threaded by a devious stochastic web. As in all cases in the Solar System, chaos ensues where resonances overlap. These results may be significant for the analysis of disposal strategies for the four constellations in this precarious region of space.