Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Experimental Neurology, 2(191), p. 326-330

DOI: 10.1016/j.expneurol.2004.10.010

Links

Tools

Export citation

Search in Google Scholar

In vivo studies on the protective role of minocycline against excitotoxicity caused by malonate or -methyl--aspartate

Journal article published in 2005 by B. Goniallo, M. Ramos, J. Jordan ORCID, N. Aguirre
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Minocycline has been shown to exert neuroprotection against a wide variety of toxic insults both in vitro and in vivo. However, contradictory results have recently been reported. We now report that minocycline affords no protection against the neurotoxicity caused by malonate or N-methyl-d-aspartate (NMDA). Rats were treated with minocycline (45 mg/kg i.p. x 7) every 12 h. Thirty minutes after the second dose of minocycline, an intrastriatal stereotaxic injection of malonate (1.5 mumol) or NMDA (0.1 mumol) was administered. Seven days later, the rats were killed, and lesion volumes were quantified using two different methods [triphenyltetrazolium chloride (TTC) staining or cytochrome oxidase histochemistry]. Our results show that minocycline does not prevent the lesions caused by either malonate or by NMDA. On the contrary, the putative NMDA receptor antagonist, MK-801, blocked the toxicity caused by both toxins indicating that, although by different mechanisms, excitotoxicity is mediating neuronal death. We conclude that minocycline, at least under our experimental conditions, is not neuroprotective against excitotoxicity caused by either malonate or NMDA.