Published in

Springer, Photochemical & Photobiological Sciences, 4(7), p. 415-422, 2008

DOI: 10.1039/b712749a

Links

Tools

Export citation

Search in Google Scholar

Sewage Bacteriophage Photoinactivation by Cationic Porphyrins: A Study of Charge Effect

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Photodynamic therapy has been used to inactivate microorganisms through the use of targeted photosensitizers. Recently the inactivation of bacteria in residual waters has been reported, but nothing is known about photoinactivation of environmental bacteriophages, which are often used as indicators of human enteric viruses. In this study we tested the effect of six cationic porphyrin derivatives with two to four charges on the photoinactivation of a sewage bacteriophage. A phage suspension of 5 x 10(7) PFU mL(-1) was exposed to white light (40 W m(-2)), during 270 min, at three photosensitizer concentrations (0.5, 1.0 and 5.0 microM). Tetra- and tricationic porphyrins inactivated the T4-like sewage phage to the limits of detection, but dicationic porphyrins did not lead to a significant decrease in phage viability. At the highest photosensitizer concentration (5.0 microM), the phage was completely inactivated (>99.9999% of inactivation, reduction of 7.2 log) after 270 min by the tetracationic porphyrin. Two of the tricationic derivatives also led to phage inactivation to the limit of detection. The rate of bacteriophage photoinactivation and the efficiency of the photosensitizer appeared to vary with the charge and with the substituents in the meso-positions of the porphyrin macrocycle. Tetra- and tricationic porphyrins can, therefore, be used as a new method for inactivating sewage bacteriophages that are frequently used as human enteric virus indicators. The complete inactivation of viruses with low light intensity means that this methodology can be used even on cloudy days and during winter, opening the possibility to develop new technologies for wastewater treatment.