Dissemin is shutting down on January 1st, 2025

Published in

Inderscience, International Journal of Bioinformatics Research and Applications, 5(6), p. 508

DOI: 10.1504/ijbra.2010.037989

Links

Tools

Export citation

Search in Google Scholar

Prediction of the post-translational modification sites on dengue virus E protein and deciphering their role in pathogenesis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dengue virus, a member of the flavivirus family, is a mosquito-borne viral pathogen for which any specific treatment or control of infection by vaccination is yet to be conclusive. The envelope glycoprotein, E, mediates viral entry by membrane fusion. Elucidation of post-translational modification sites in E protein followed by sequence alignment produced stretches of residues which are conserved in most of the members of flaviviruses. Presence of protein kinase A (PKA) and protein kinase G (PKG) phosphorylation sites predicts that E protein may activate PKA and PKG through phosphorylation which is responsible for inhibition of platelet activation, and thereby causing thrombocytopenia. Here, we attempt to decipher the novel role of Dengue virus E protein in pathogenesis.